
Client-Specific Equivalence Checking ASE ’18, September 3–7, 2018, Montpellier, France

1 APPENDIX
1.1 Applicability Study (Long Version)
To find the Python examples, which were selected with the aim of
directly applying our tool, we searched GitHub using the string
“topic:python3” and examined the 20 most “starred” results. Due
to our tool’s restricted support for data-types, we manually nar-
rowed the search to projects whose behavior can be faithfully rep-
resented by integers, filtering out projects that rely heavily on
floating-point numbers, string manipulations, or overly complex
data structures and interfaces (e.g. databases). Two authors then
ordered the projects based on quality of documentation. We exam-
ined the 100 most recent commits from the first project, Delorean,
and left the remaining projects for future work.

Out of these 100 commits, only 24 deal with Python source code.
Nine Of these 24 commits contain a semantic change to a function
that does not modify its signature. Inside of these nine commits we
found six function updates that can be entirely understood through
integer reasoning. Two of the function updates applied to the same
function, Delorean(). See Sec. 6.4 for detail on behavior preserving
transformations to integers that had to be performed.

To find clients for these six functions we searched GitHub using
the string “Delorean”. This search yielded 1,307 Python code results.
Filtering out projects with fewer than five “stars”, we found five
unique clients in the first 200 results. Among these, the functions
Speculator.date_to_delorean(), Speculator.get_end_start_epochs(), and
bii-server.UtcDatetime(), all calling Delorean(), were identified for
analysis.

In all six cases – three client functions considered with two
library updates each – the change in the library is not exercised.
That is, for each client-library pair, the update to the library is
client-specific equivalent. 5

Delorean.__init__ (Delorean). TheDelorean.__init__ library func-
tion receives two parameters: datetype and timezone and returns
a Delorean object that provides users with the datetime manip-
ulation functionality. The behavior of the constructor is entirely
defined by the type of arguments it receives. That is, all condition-
als branch based on the type of datetime and timezone. There are
two changes of interest for this library (#679596a, #064bc8d). Both
changes, which concern the setting of an instance variable _tzinf o
(timezone info), occur inside a check for timezone and datetime
being None; the latter change occurs inside an additional check for
timezone being of type tzinfo. Both these changes are irrelevant to
clients that either

(1) construct a Delorean object with a None datetime, or time-
zone; or

(2) construct a Delorean object with a string timezone; or
(3) manually reset _tzinf o after creating the Delorean object.
To find clients for these two updates, we searched GitHub us-

ing the string “Delorean”. This search yielded 1307 Python code
results. Filtering out projects with fewer than five “stars”, we found
three unique client functions, Speculator.date_to_delorean(), Spec-
ulator.get_end_start_epochs(), and bii-server.UtcDatetime(). All six
cases – three client functions considered with two library updates
each – are unaffected by the library updates because they call the
5For full results, see https://client-specific-equivalence-checker.github.io/

Delorean constructor with values of datetime, or timezone that avoid
the change, as discussed above.
BN_is_prime_fasttest_ex (OpenSSL). Library BN_is_prime_fasttest_-
ex receives four parameters: an integer a, an integer flag do_trial_-
division, and two structs used for call back procedure and context
that are irrelevant to the change. The function aims to return 1
if a is prime, and 0 otherwise. do_trial_division specifies whether
the function should attempt to divide a by a constant list of small
primes. The change of interest (#6e64c560) fixes a bug in which the
original function considered small primes as composites because
they are evenly divisible by a prime (themselves). After the commit,
aptly titled “Small primes are primes too”, the function checks that
a candidate composite is not in the list of small primes. This change
is irrelevant to clients that:

(1) call BN_is_prime_fastest_ex with do_trial_division = 0;
(2) call BN_is_prime_fastest_ex with a greater than the largest

prime in the list of small primes; or
(3) independently check if a is divisible by a small prime.
To find clients for this library, we searched GitHub using the

string “BN_is_prime_fastest_ex”, resulting in 11,500 C files. Of the
first 1,000 code results, we found 10 unique clients (see Table 1).
Five of them were unaffected by the change, calling BN_is_prime_-
fastest_ex with do_trial_division = 0 (case #1). One of the remaining
five (OpenSSL-Elgamal/elegamal_gen.c) is “almost unaffected” as it
calls BN_is_prime_fastest_ex with a large a that just falls short of
the largest small prime. No client independently checks a over the
list of small primes.
RSA_check_key (OpenSSL). The RSA_check_key function takes
in a pointer to a RSA key and decides its validity. RSA keys are
composed of five integer fields: p, q, n, e , and d . The modification
that we considered (#534e5fa) adds a check that returns 0 (bad key)
if any of these five components are null. This change is irrelevant
to clients that:

(1) call RSA_check_key with neither p, q, n, e , or d being null; or
(2) will fail due to null value anyway.
To find clients for this library, we searched GitHub using the

string “RSA_check_key”. The first 1,000 search results out of the
found 24,741 C files contained 32 unique clients (see Table 1). Of
these, 27 were unaffected by this library change. 24 clients construct
an RSA key by calling either PEM_read_RSAPrivateKey, EVP_PKEY_-
get1_RSA, or RSA_generate_key and then call RSA_check_key with
this key. According to the documentation, these three helper func-
tions successfully populate the RSA fields with non-null values
or return null. The former situation corresponds to the first prop-
erty of clients we are looking for, and the latter corresponds to the
second (the library will fail given a null value before or after the
update). In both situations, the change to the library is irrelevant to
the client. There were clients (#fbf15c7) that attempted to access
the fields before calling RSA_check_key. The change did not affect
these clients because they will cause a segmentation fault before
calling the library in the cases relevant to the change.

The five clients that are affected by this change receive the RSA
key as an input parameter or use an unknown function to generate
it (e.g., parse_pk_file(dudders/crypt_openssl.c), and then call RSA_-
check_key.



ASE ’18, September 3–7, 2018, Montpellier, France Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik

gcd (Linux). The Linux project’s gcd function calculates the great-
est common denominator of two unsigned integer values using the
standard Euclidean algorithm. This function, in its original imple-
mentation, was vulnerable to division by zero. To circumvent this
issue, an update (#e968756) was made to check that the smaller of
the two input values is not zero. The change is irrelevant to clients
that:

(1) call gcd with non-zero values; or
(2) are vulnerable to division-by-zero independently of this li-

brary.
The string “gcd” is too generic to be used for effectively searching

GitHub. We thus limited our search to the Linux project itself,
in which we found 11 clients. Of these, three are unaffected by
the change. These clients either check that the inputs to gcd are
non-zero directly (case #1), or use provably positive values (case
#2). The remaining clients call the gcd function with values set by
parameters. In such cases, we cannot be sure that the arguments to
gcd are non-zero and thus conservatively classify these clients as
affected (see Table 1).
mpf_get_d_2exp (GMP). We also considered the function mpf_-
get_d_2exp. Sec. 1. For a partial code listing, see Fig. 2. This change
affects the sign of the return when the input is negative, and is
irrelevant to clients that:

(1) do not use the returned double (i.e., only use the exponent);
(2) call mpf_get_d_2exp with non-negative parameters; or
(3) change the sign of the return of mpf_get_d_2exp when the

input to this function is negative.
To find clients for this library, we searched GitHub using the

string “mpf_get_d_2exp”. This search yielded 7,632 C files. Of the
first 1,000 code results, we found 7 unique clients, 6 of which were
unaffected by the change. Three of the clients did not use the re-
turned double (case #1), one always called the library with positive
values (case #2), and one, shown in Fig. 3a, changed the sign of the
return when necessary (case #3).

The one client affected by the change, shown in Fig. 3b, calls
a function that is undefined on negative inputs with the result
returned by mpf_get_d_2exp.

1.2 Benchmark Details
We now give a brief description of the examples we created for
our experiments. BN_is_prime_fasttest_ex (see Sec. 2) inspired the
first three programs: is_prime1, is_prime2 and is_prime3. These
programs use the same library but have different clients. The library
is a simple prime checker that takes an unsigned short x and a flag.
If the flag is non-zero, the library returns 0; otherwise, it checks
whether the input is prime by trial division over the first eight
primes. The original version of the library does not check if a
composite candidate is one of the first eight primes; the updated
library does. The client for is_prime1 always calls the library with
the flag equal to 0; the client for is_prime2 always calls the library
with x>19; the client for is_prime3 checks whether x is in the list
of small primes before calling the library.

RSA_check_key and gcd (see Sec. 2) inspired the next two pro-
grams, divide1, and divide2. The programs share a library that was
patched to avoid a division by zero. divide1’s calls the library with

safe arguments, while divide2 is victim to the same divide-by-zero
error as the library. Both programs are client-specific equivalent.
In the latter case, the library update preserves partial functional
equivalence since the original version is undefined on the value
that differs.

mpf_get_d_2exp (see Sec. 2) inspired order, pos1, and pos2. The
library in order calculates an integer value whose sign depends on
the order of its arguments. The update rectifies this by swapping
values if necessary to ensure that the return is positive. The client
for order is aware of this pitfall in the original library, and so it
calls the library with arguments in the correct order to ensure a
positive return. pos1 and pos2 share a client but have distinct library
updates. In their case, the client always calls the library with a
negative value. Since the libraries differ only on positive inputs,
they are equivalent with regards to this client.

Of the remaining examples, oneN1 is a case where the library
changes significantly but the client remains unaffected. oneN2 and
get_sign add to our collection of non-equivalent cases. get_sign2,
multiple, and ltfive are straightforward equivalences. odd provides
a case where an infinite loop in the library cannot be avoided
but the client is unaffected. Finally, factorial and fib provide four
cases where the library versions are alternate implementations
of the same mathematical function. In two cases, the alternate
implementation introduces a bug which breaks equivalence.

1.3 Case-study Details

Table 3: Case-study execution times.

Benchmark time (s) result
bii_1 1.945 pattern
bii_1_mod 1.913 counter
bii_1_error 2.007 counter
bii_2 1.873 pattern
spec_1 0.043 pattern
spec_1_mod 0.063 counter
spec_1_error 0.041 counter
spec_2 2.118 pattern
spec_2_mod 2.375 assertion
spec_2_error 1.324 counter
spec_2_alt 2.186 pattern
spec_1_alt_mod 2.404 counter
spec_1_alt_error 1.318 counter
spec_3 0.056 pattern
spec_4 2.439 pattern
spec_4_alt 2.169 pattern

Table 3 lists the execution times of Clever on every client-
library function pair considered in Sec. 6.4. All pairs are available
at https://client-specific-equivalence-checker.github.io/.


